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The interpretation of angular symmetries in electron nanodiffraction patterns

from thin amorphous specimens is examined. It is found that in general there are

odd symmetries in experimental electron nanodiffraction patterns. Using

simulation, it is demonstrated that this effect can be attributed to dynamical

scattering, rather than other divergences from the ideal experimental conditions

such as probe-forming lens aberrations and camera noise. The departure of

opposing diffracted intensities from Friedel’s law in the phase grating formalism

is calculated using a general structure factor for disordered materials. On the

basis of this, a simple correction procedure is suggested to recover the

kinematical angular symmetries, and thus readily interpretable information that

reflects the symmetries of the original projected object. This correction is

numerically tested using both the phase object and multislice calculations, and is

demonstrated to fully recover all the kinematical diffracted symmetries from a

simulated atomic model of a metallic glass.

1. Introduction

Despite the lack of long-range order in amorphous materials

and glasses it is thought that significant localized atomic

ordering exists (Treacy et al., 2005). This ordering can exist at

several different length scales. At the length scale of nearest

neighbours, the short-range atomic order (SRO) can be quite

tightly dictated by efficient atomic packing in the case of

metallic glasses, or covalent bonding in the case of amorphous

semiconductors and network glasses. Order extended beyond

this into the realm of medium-range atomic order (MRO) (1–

3 nm) depends on how the local structural units may be

packed or connected together (Treacy et al., 2005). Broad

beam diffraction experiments measure the average diffracted

intensity that may be inverted by Fourier transform to yield

the volume-averaged two-body atomic correlations. In amor-

phous and glassy materials the two-body correlations are not

sufficient to distinguish between competing structural models

and thus do not permit deep insight into the influence of

structure on properties and behaviours (Treacy & Borisenko,

2012; Ziman, 1979).

Small volume diffraction measurements of complex dis-

ordered materials have a distinct advantage over broad beam

measurements. In diffracted information from small volumes

small fluctuations in atomic correlations due to local order are

not averaged out. Two approaches have been developed to

access the higher-order atomic correlation functions, based on
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measuring diffracted information from volumes with size

comparable to the SRO–MRO. The first, fluctuation electron

microscopy, collects diffracted intensity from volumes with a

size that encompasses the MRO of the material. By calculating

the variance in this diffracted intensity from volume to

volume, information that probes the four-body correlation

function can be obtained (Treacy et al., 2005). Unlike the

average diffracted intensity, the variance cannot be inverted to

obtain directly the correlation function. However, the data can

be used to constrain atomic models using reverse Monte Carlo

(Treacy & Borisenko, 2012). Angular correlations in electron

nanodiffraction (END) patterns (Zuo & Tao, 2011; Cowley,

2002) have been used to access the local three-body correla-

tion function or bond-orientational order in the short-range

clusters of the material (Gibson et al., 2010; Liu et al., 2013;

Howie et al., 1985). For a thin, dense material in which the

inter-nearest-neighbour cluster distance is comparable to the

intra-nearest-neighbour cluster size, it has been shown by

simulation both in the X-ray microdiffraction (Altarelli et al.,

2010; Kurta et al., 2012) and electron nanodiffraction (Liu et

al., 2013) cases, that sensitivity to the orientational order

within clusters is optimized by tuning the coherence length

(X-rays) or size (electrons) of the probe to the size of the

clusters. Even in this ideal condition, the angular cross-auto-

correlation function (Wochner et al., 2009) needs to be eval-

uated to quantify subtle angular correlations in the diffraction

pattern from a column of disordered material containing

several nearest-neighbour clusters (Liu et al., 2013).

In the case of X-ray microdiffraction of colloids and elec-

tron nanodiffraction of metallic glasses, significant departures

from Friedel’s law were noted, that is, in general IðkÞ 6¼ Ið�kÞ

(Wochner et al., 2009; Liu et al., 2013). An extensive analysis of

this behaviour and ramifications for the interpretations of such

patterns was not undertaken. For X-ray microdiffraction, the

breakdown was attributed to Ewald sphere curvature

(Wochner et al., 2009). For thin foils and energetic electrons

the Ewald sphere may be well approximated as flat. For thin

amorphous specimens, and a qualitative interpretation of

diffracted intensities and phase-contrast images, the kinema-

tical or weak-phase object approximation is sufficient to

model the electron–specimen interaction (Cowley et al., 1988).

It has been observed that significant lens aberrations in the

probe-forming lens will always result in a breakdown of

Friedel symmetry in electron microdiffraction patterns of

amorphous materials (Hÿtch & Chevalier, 1995; Rodenburg,

1988). An aberrated incident beam will add an imaginary

component to the transmitted beam that will result in a

breakdown of Friedel’s law even if the kinematical approx-

imation is employed for the electron–specimen interaction

(Hÿtch & Chevalier, 1995).

In this contribution we examine angular symmetries in

END from amorphous materials using optical parameters

typical in an aberration-corrected scanning/transmission

electron microscope (S/TEM). In this context, lens aberrations

are no longer the major cause of the absence of exact �
azimuthal rotational symmetry of nanodiffraction patterns.

Rather, the asymmetry is due to dynamical diffraction in the

diffracting volume. This multiple scattering complicates the

interpretation of individual END patterns from disordered

materials in terms of the symmetries of the original object. We

analyse the asymmetry in END from amorphous objects in the

phase grating (Cowley & Moodie, 1959) and dynamical

(Cowley & Moodie, 1957; Fujimoto, 1959) formulations of

electron diffraction. On the basis of our analysis we suggest a

simple approach that can be applied to the average symme-

tries from an ensemble of nano-electron diffraction patterns to

recover the average kinematical symmetries of the projected

structure. In disordered specimens in which the number of

coordination clusters in the diffracting column is limited, this

approach may permit a quantitative measurement of

symmetries of the nearest-neighbour clusters in the material.

2. Methods

A schematic of the scanning electron nanodiffraction (SEND)

experiment in the S/TEM is shown in Fig. 1. An intense, quasi-

parallel electron probe is scanned in 1 Å steps across a thin

specimen. The full-field electron nanodiffraction pattern,

Iðkx; kyÞ, is collected at each point in the scanned array, ðx; yÞ.

If dynamical diffraction effects are significant, diffracted

intensities from different depths in the volume can interfere

constructively or destructively as shown.

Two melt-spun ZrxCu100�x glasses were studied. The

ribbons were jet-polished until perforation (Struers TenuPol 5,

33.3%:66.7% nitric acid:methanol, 233 K, 12 V, 100 mA), and

then briefly ion-milled at low ion energies and temperature to

remove the surface oxide (Gatan Precision Ion Polishing

System, 5 min, 1 keV, 173 K, 2�). The specimens were kept

under vacuum and examined within 48 h of preparation to

limit oxide formation. This preparation regimen did not result

in any de-vitrification (Liu et al., 2013). An FEI Titan3 80–300

FEGTEM (300 keV) with spherical (Cs) aberration correction

of the imaging and probe-forming lenses was used to obtain

SEND patterns of the glass (Fig. 1: aperture semi-angle � =

2.7 mrad, spherical aberration Cs = 0 mm, defocus �f ¼ 0 nm,
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Figure 1
Schematic of SEND experiment.



probe FWHM dp = 0.51 nm). The spatial coherence function

of this instrument has been measured under the relevant

electron-optical conditions (Maunders et al., 2011) and is, to an

excellent approximation, perfectly coherent within the small

angular range defined by the probe-forming aperture used

here. This truncated spherical wavefield is imaged onto the

specimen plane using a lens system with a lens aberration

function given here to low order as a function of scattering

vector, jkj ¼ k ¼ ðk2
x þ k2

yÞ
1=2 (Kirkland, 2010):

�ðkÞ ¼ ���f�k2 þ �fa2�k2 sin½2ð’� ’fa2
Þ� þ 2�Cs�

3k4

þ 2�fa3�
2k3 sin½3ð’� ’fa3

Þ� þ 2�fc3�
2k3 sinð’� ’fc3

Þ:
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Figure 2
Simulated END patterns from a perfect icosahedron (a-i), a model (b-i) and experimental (c-i) Zr36Cu64 glass. Angular CCFs (a-ii), (b-ii), (c- ii), profiles
of these CCFs from k within the first diffracted ring (a-iii), (b-iii), (c- iii), and magnitudes of the 0–12-fold symmetries in the CCFs (a-iv), (b-iv), (c-iv)
from the icosahedron, model and experimental glass, respectively.



Here �f is defocus, fa2 is twofold astigmatism, fa3 is threefold

astigmatism, Cs is spherical aberration and fc3 is coma.

Defocus and spherical aberration are axially symmetric while

the other aberrations included here vary with azimuthal angle.

The experimental convergence angle was selected for a

given defocus and spherical aberration coefficient to bring

the real-space resolution (probe size) down to the size of

SRO clusters (�0.6 nm). A high-angle annular dark-field

(HAADF) reference image was used to select regions for

investigation (Fig. 2c). Arrays of 30 � 30 SEND patterns were

collected from three 3.0 � 3.0 nm areas using a 1.5 s exposure

time and a Gatan UltraScan CCD camera (2048 � 2048

binned to 512 � 512). Estimated thickness profiles were

obtained using electron energy loss spectroscopy (EELS) and

the log-ratio technique (Egerton, 1996). The thickness of the

regions from which SEND patterns were obtained was �5–

10 nm (Liu et al., 2013).

SEND patterns were simulated using IDL routines based on

well known algorithms (Kirkland, 2010) using the kinematical,

phase grating (Cowley & Moodie, 1959) and multislice

approximations for the electron–specimen interaction

(Cowley & Moodie, 1957). Perfect spatial coherence was

assumed. The simulated structure was a 5000-atom model

Zr36Cu64 (4 � 4 � 4 nm) obtained using molecular dynamics

(MD) and embedded atom method (EAM) potentials

(Mendelev et al., 2009, 2010). The experimental (Fig. 2c-i) and

simulated (phase grating, Fig. 2b-i) SEND patterns display

diffracted intensities at the positions of the first and second

diffraction rings for this glass [4.5 and 8.0 nm�1, respectively

(Mendelev et al., 2010)] and a similar size of diffracted speckle

to the un-diffracted disc, demonstrating that a similar low

number of local clusters is being probed in each case. This

number is 10–12 for the 4 nm-thick simulation cell.

To detect the subtle symmetries present in each SEND

pattern recorded at probe position r ¼ ðx; yÞ, we calculated

the four-point angular cross-correlation function (CCF)

defined by Wochner et al. (2009) as a function of scattering

vector according to

Cðr; k;�Þ ¼
hIðk; ’ÞIðk; ’þ�Þi’ � hIðk; ’Þi

2
’

hIðk; ’Þi2’
: ð1Þ

Here Iðk; ’Þ is the intensity diffracted into a given k and

azimuthal angle, ’, and hi’ denotes averaging over the

azimuthal angle at a given k (Altarelli et al., 2010). This

function is related to the ‘correlograph’ (Gibson et al., 2010)

and correlation function (Howie et al., 1985) that have been

employed to uncover angular correlations in electron

diffraction speckle patterns (Gibson et al., 2010; Howie et al.,

1985).

Altarelli and co-workers have analysed the properties of the

CCF assuming an orientationally disordered system of scat-

terers with prominent local structures (Altarelli et al., 2010;

Kurta et al., 2012). They find that in the limit of either dilute

systems or densely packed systems in which the illumination

has a coherence length comparable to the size of the local

cluster, as in this work, the CCF will demonstrate angular

correlations reflecting symmetries of the local structural units

(Altarelli et al., 2010; Kurta et al., 2012). Moreover, the

magnitude of the symmetries present in the diffraction pattern

can be accessed by decomposing the CCF at each k into a

Fourier cosine series (Altarelli et al., 2010) and obtaining the

amplitude of each periodicity. Symmetries present/absent in

the object may not be unambiguously present/absent in the

diffraction pattern due to the projection geometry, dynamical

diffraction, Ewald sphere curvature, an aberrated probe and

other experimental constraints such as noise.

Fig. 2(a-i) displays the simulated END pattern from a single

icosahedral cluster (Mendelev et al., 2009, 2010) oriented down

its fivefold axis. A perfect icosahedron has 30 twofold, 20

threefold and 12 fivefold symmetry axes, resulting in SEND

patterns with distinct two-, six- and tenfold symmetries,

respectively. Panels (b-i) and (c-i) of the same figure display

simulated and experimental END patterns from a Zr36Cu64

glass. Simulations in this figure employ the phase grating

approximation (Cowley & Moodie, 1959).

The corresponding CCFs from these patterns are displayed

in Figs. 2(a-ii), 2(b-ii), 2(c-ii), respectively. Profiles through the

CCFs from the first diffracted ring are shown in Figs. 2(a-iii),

2(b-iii), 2(c-iii). The SEND patterns from the experimental

and model glasses have prominent tenfold and sixfold

symmetries, respectively, not obvious prior to CCF analysis,

while the SEND pattern from the icosahedral cluster shows

strong tenfold symmetry. In general, the SEND patterns from

glasses possess a number of different symmetries at various k

that vary greatly from point to point. Strong symmetries in the

experimental SEND patterns are mostly confined to the first

diffracted ring, as the signal-to-noise ratio at higher scattering

angles is low as we see in the CCF in Fig. 2(c-ii).

We plot the Fourier coefficient of each symmetry in the

END patterns as a function of k and show this symmetry

magnitude in Figs. 2(a-iv), 2(b-iv), 2(c-iv) for the 0–12-fold

symmetries and for the icosahedral cluster and experimental

and model glasses. The appearance of odd symmetries in the

symmetry magnitude images from the experimental and

model glasses (Figs. 2b-iv and 2c-iv) demonstrates the earlier

noted breakdown of Friedel symmetry to varying degrees, with

the experimental symmetry magnitude image showing more

intense odd symmetries at higher k than simulation. Similar to

X-ray microdiffraction simulation results (Altarelli et al., 2010;

Kurta et al., 2012) the magnitude of symmetries in END

patterns from local clusters in a metallic glass was optimized

when the probe size was tuned to the size of the local cluster

(Liu et al., 2013). Specifically, the magnitude of the tenfold

symmetry in an END from an on-axis icosahedron on top of

4 nm of glass was maximized when the probe size was equal to

the cluster size. Qualitatively, a larger probe size sampled

more clusters, reducing the magnitude of the tenfold

symmetry, while a smaller probe and larger convergence angle

resulted in overlapping diffracted intensities in the END,

reducing the magnitude of the tenfold symmetry again (Liu et

al., 2013).

We may spatially average the symmetry magnitudes to

investigate the nature of the predominant local structure. It

476 Amelia C. Y. Liu et al. � Electron nanodiffraction Acta Cryst. (2015). A71, 473–482

research papers



has been shown (Liu et al., 2013) that these averaged

symmetry magnitudes statistically sample the structure and

also detect a number of strong symmetries associated with

particular symmetric polyhedra (Fang et al., 2010) that exist in

the glass. We can also map individual symmetry magnitudes to

examine the spatial extent of particular symmetries. Such

symmetry maps will reflect the degree to which adjacent local

structures share prominent symmetry axes in this glass.

We average the magnitude of the two-, six- and tenfold

symmetries over the width of the first diffraction ring

(3 � k � 6 nm�1) and map these averages. These maps are

presented in Fig. 3 for the model glass with contrast ranges set

to the maximum intensity in the tenfold symmetry maps. The

averages of these maps reflect the symmetries in the SRO of

the material.

In this work we concentrate on examining these average

symmetry magnitudes from ensembles of 2700 patterns from

experimental and simulated SEND patterns. We demonstrate

that while the angular symmetries in an individual diffraction

pattern may not be interpreted straightforwardly in terms of

symmetries present in the object, there is an approach that will

allow the average symmetry magnitudes to be interpreted in

this way.

3. Results

3.1. Theoretical background

There can be a number of reasons for differences in the

magnitude of opposing diffracted intensities in the S/TEM.

The first we shall consider is Ewald sphere curvature, which

can mean that nominally Friedel-related diffracted intensities

are in fact arising from non-equivalent volumes in reciprocal

space. The degree of Ewald sphere curvature can be calculated

from geometry (Glaeser & Ceska, 1989):

z	 ¼
1

�
�

1

�

� �2

�
1

d

� �2
" #1=2

: ð2Þ

Here z	 is the magnitude of the curvature in reciprocal units

(distance between the Ewald sphere at 1/d and the zero

plane), � is the wavelength and d is the real-space resolution.

For 300 keV electrons, and examining symmetries in the first

diffracted ring of a dense disordered material like a metallic

glass, the magnitude of curvature is ten times smaller than the

reciprocal thickness of the specimen and thus Ewald sphere

curvature is not expected to contribute greatly to the break-

down of Friedel’s law.

Even if the weak-phase or kinematical approximation could

be applied to the electron beam interaction with the specimen,

an imaginary component in the original probe wavefunction

arising from lens aberrations can give rise to asymmetry in

diffraction patterns made using a converged probe (Roden-

burg, 1988; Hÿtch & Chevalier, 1995). Following previous

work (Hÿtch & Chevalier, 1995), we write for the specimen

exit wave

 ðrÞ ¼  0ðrÞ exp½i�vðrÞ�: ð3Þ

Here  0ðrÞ is the probe wavefunction and vðrÞ is the projected

potential according to

vðrÞ ¼
R

vðx; y; zÞ dz: ð4Þ

In the weak-phase object limit we can approximate this as

 ðrÞ ¼  0ðrÞ þ i� 0ðrÞvðrÞ: ð5Þ

The disturbance in the back focal plane is then

�ðkÞ ¼ �0ðkÞ þ i��0ðkÞ 	 VðkÞ: ð6Þ

Here �ðkÞ ¼ F½ ðrÞ�, �0ðkÞ ¼ F½ 0ðrÞ�, VðkÞ ¼ F½vðrÞ�,

where F½� denotes a Fourier transform.

Putting �dðkÞ ¼ i��0ðkÞ 	 VðkÞ we can write for the

diffracted intensity

IðkÞ ¼ j�ðkÞj2

¼ j�0ðkÞ þ�dðkÞj
2

¼ j�0ðkÞj
2
þ j�dðkÞj

2
þ 2Re �	0ðkÞ�dðkÞ

� �
: ð7Þ

If any of the three terms in this equation are not symmetric

with the substitution k!�k then Friedel’s law will be

broken. The first term will be symmetric with such a substi-

tution if the probe is a real function, that is, there is no

significant phase variation across the objective aperture from

aberrations. The second term will also be symmetric if the

probe and object functions are real. To see this explicitly we

write

�	dð�kÞ ¼ �i��	0ð�kÞ 	 V	ð�kÞ

¼ �i��0ðkÞ 	 VðkÞ

¼ ��dðkÞ: ð8Þ

Lens aberrations will introduce an imaginary component to

this diffracted wavefunction, and the symmetry will be broken.

Finally, the third term that represents interference between

the undiffracted and diffracted wavefunctions will also be

asymmetric, for a non-centrosymmetric object and for the

values of k where the two beams are of similar magnitude.

Thus, as noted by Rodenburg (1988) and Hÿtch & Chevalier
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Figure 3
Two-, six- and tenfold symmetry maps produced from simulated SEND
patterns from the model Zr36Cu64 glass. Contrast for the simulated and
experimental maps has been scaled to the maximum intensity in the
tenfold map.



(1995), lens aberrations can introduce significant asymmetry in

END patterns of general disordered objects even if the

kinematical approximation holds.

Considering a general object with no centre of symmetry, if

dynamical effects are taken into account, and even if the

incident probe has no aberrations, Friedel’s law will be broken

(Cowley & Moodie, 1959). Assuming a real probe wavefunc-

tion of unit magnitude, in the phase grating approximation

(Cowley & Moodie, 1959), we can write for the specimen exit

wave

 ðrÞ ¼ exp½i�vðrÞ�: ð9Þ

The wavefunction in the back focal plane is thus
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Figure 4
Ideal END patterns, corresponding symmetry magnitudes and profiles through the CCF with main Fourier components overlaid for twofold symmetry in
the kinematical (a) and dynamical (b) cases, and fourfold symmetry in the kinematical (c), dynamical (involving one Friedel pair) (d) and dynamical
(involving both Friedel pairs) (e) cases.



�ðkÞ ¼ F exp½i�vðrÞ�
� �

¼ F cos½�vðrÞ�
� �

þ iF sin½�vðrÞ�
� �

: ð10Þ

For a general object we can write (Cowley & Moodie, 1959)

�ðkÞ ¼ �ðkÞ þ i�SðkÞ �
�2

2
½SðkÞ 	 SðkÞ� þ . . . ð11Þ

We define the kinematic structure factor SðkÞ or single scat-

tering distribution:

SðkÞ ¼
P

j

fjðkÞ expð2�ik 
 rÞ: ð12Þ

The sum is undertaken over all the atoms j in the diffracting

column with atomic scattering factors fjðkÞ. This single scat-

tering distribution is analogous to the kinematical structure

factor for a crystal (Cowley & Moodie, 1959) but is a contin-

uous distribution in reciprocal space, rather than existing only

at reciprocal-lattice points.

�ðkÞ is the sum of the Fourier transform of a cos and sin

term, both of which are complex for structures lacking a centre

of symmetry. Following a line of argument developed by

Cowley, we write the cos term as the sum of symmetric and

anti-symmetric components:

cos½�vðrÞ� ¼ 1
2 fcos½�vðrÞ� þ cos½�vð�rÞ�g

þ 1
2 fcos½�vðrÞ� � cos½�vð�rÞ�g: ð13Þ

We denote Fourier transforms of these components as Ccos and

iAcos. The sin component can be treated in the same way. Thus

�ðkÞ ¼ Ccos þ iAcos þ iðCsin þ iAsinÞ

¼ Ccos � Asin þ iðCsin þ AcosÞ ð14Þ

IðkÞ ¼ j�ðkÞj2

¼ ðCcos � AsinÞ
2
þ ðCsin þ AcosÞ

2
ð15Þ

Ið�kÞ ¼ ðCcos þ AsinÞ
2
þ ðCsin � AcosÞ

2: ð16Þ

For a centrosymmetric crystal the anti-symmetric components

equal zero and thus IðkÞ ¼ Ið�kÞ. If the structure has no

centre of symmetry, as for the disordered structures we

investigate here, then in general

IðkÞ ¼ I1 þ I2 ð17Þ

Ið�kÞ ¼ I1 � I2: ð18Þ

Here we define I1 ¼ C2
cos þ A2

sin þ C2
sin þ A2

cos and I2 =

�2CcosAsin þ 2CsinAcos.

This symmetry degradation due to dynamical diffraction

also holds in the more general case of dynamical scattering in

the multislice and scattering matrix formalisms (Cowley &

Moodie, 1959; Fujimoto, 1959). For non-centrosymmetric

structures the intensities of opposing Friedel pairs have a

similar form to the phase grating case, but include higher-

order terms:

IðkÞ ¼ j�ðkÞj2 ¼ Ia þ Ib þ . . . ð19Þ

Ið�kÞ ¼ j�ð�kÞj2 ¼ Ia � Ib þ . . . ð20Þ

The Ia coincide with the kinematical result, and represent

scattering up to the second power of crystal thickness in the

scattering matrix expansion (Fujimoto, 1959). The Ib are the

terms up to the third power in crystal thickness. These terms

and other higher-order odd terms in the expansion vanish for

centrosymmetric crystals, and cause a breakdown in Friedel

symmetry for non-centrosymmetric structures. The scattering

matrix expansion in thickness coincides with the multislice

approach of Cowley & Moodie (Fujimoto, 1959).

Dynamical scattering thus reduces the magnitude of a

twofold symmetry in an END pattern and increases the

contribution into a onefold symmetry. Consider a single pair of

angularly opposing diffracted intensities Iðk; ’1Þ = Iðk; ’1 þ �Þ
in the kinematical case. This will result in a non-zero contri-

bution to the CCF at ðk;� ¼ 0Þ and ðk;� ¼ �Þ that we write

as

Cðk;� ¼ 0Þ ¼ Cðk;� ¼ �Þ

¼ Iðk; ’1ÞIðk; ’1 þ �Þ þ Iðk; ’1ÞIðk; ’1 þ �Þ

¼ 2Iðk; ’1Þ
2: ð21Þ

We omit terms at other values of azimuthal angle, ’, and the

normalizing factor equal to the intensity averaged over ’. In

the case that includes dynamical scattering the contributions

to the CCF at � ¼ 0 and � ¼ � are not equal:

Cðk;� ¼ 0Þ ¼ ðI1 þ I2Þ
2
þ ðI1 � I2Þ

2

¼ 2I2
1 þ 2I2

2 ð22Þ

Cðk;� ¼ �Þ ¼ ðI1 þ I2ÞðI1 � I2Þ þ ðI1 þ I2ÞðI1 � I2Þ

¼ 2I2
1 � 2I2

2 : ð23Þ

Thus the magnitude of the twofold symmetry is reduced and

instead there is a contribution to a onefold symmetry.

This effect is shown explicitly in Fig. 4. This figure displays

ideal END discs with twofold symmetry in the kinematical

case [(a) I2 ¼ 0] and the dynamical case [(b) I2 6¼ 0]. The

symmetry magnitudes from the Fourier decomposition and a

profile through the CCF with the largest terms in the

decomposition overlaid are shown to the right of the END

patterns. From these panels it is clear that in the kinematical

case, only even symmetries are observed, as expected. In this

case higher-order even symmetries occur to fit the flat regions

in the CCF, an effect which will be minimal with background

intensity. Dynamical effects manifest as a decrease in the even

symmetry magnitudes and an increase in the odd symmetries

with the greatest magnitude increase in the odd symmetry just

below the pattern’s dominant even symmetry. A similar effect

is seen for the fourfold case [(c) kinematical, (d) dynamical

with asymmetric intensities of one Friedel pair, (e) dynamical

with asymmetric intensities of both Friedel pairs with I3 6¼ I2].

Again, dynamical diffraction results in a ‘leakage’ of symmetry

magnitude in the diffraction pattern into the odd symmetry

one channel below the dominant even symmetry. The reason

for this can be seen from the breakdown into Fourier

components. The odd symmetries are required to reduce the

magnitudes of the dominant even symmetry. Dynamical
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diffraction of all reflections (panel e) increases this effect. The

effect is also observed for all higher symmetries in an END

pattern, i.e. sixfold and tenfold.

Finally, we expect that experimental instabilities such as

noise in the charge-coupled device (CCD) camera may also

contribute to the non-equivalence of Friedel-related diffrac-

tion pairs. We examine the effect of lens aberrations, dyna-

mical diffraction and camera noise on angular symmetry in

END by simulation.

3.2. Analysis of SEND patterns

Figs. 5(a), 5(b) and 5(c) show simulated END patterns from

the same volume in the model glass employing the kinema-

tical, phase object and multislice approximations, respectively.

In panel (d) we show a simulated END pattern employing the

phase object approximation with a large twofold astigmatism

(500 nm). By inspection, it is difficult to see any differences

between the diffraction patterns. However, when the magni-

tudes of symmetries in the END patterns are compared

quantitatively there are clear differences, with odd symmetries

appearing in the phase grating, multislice and aberrated

examples. We statistically analysed the symmetries present in

the END pattern employing various electron diffraction

approximations (kinematical, phase grating, multislice) and

including noise and large values of aberration coefficient. To

do this, we averaged the symmetry magnitudes in the first

diffracted ring (3 � k � 6 nm�1) from an ensemble of 900

simulated nanodiffraction patterns. Such an averaging tech-

nique has been found to be critical to obtaining a stable

estimate of the degree of Friedel symmetry in END patterns

from amorphous materials (Sun et al., 2014). We averaged

results from the atomic model in three orthogonal orientations

and cite the standard deviation in these measurements as the

error.

Fig. 6 shows plots of the averaged symmetry magnitudes for

the following scenarios. Fig. 6(a) shows symmetry magnitudes

from END patterns with 0.3%, 1%, 3%, 10% and 20% noise

corresponding to average counts of 100 000, 10 000, 1000, 100

and 25. To simulate the presence of noise a random Poisson

deviate was added to simulated END patterns that were

multiplied by the average number of counts. The average

experimental noise level was 3% corresponding to average

diffracted counts of 1000. Fig. 6(b) shows the symmetry

magnitudes in the phase object approximation with no aber-

rations, typical measured aberrations for the experimental

conditions (�f = �1.13 nm, fa2 = 4.609 nm, fa3 = 20.66 nm, fc3

= 6.099 nm, Cs = �280 nm), and large values of spherical

aberration (Cs = 10 000 nm), twofold astigmatism (fa2 =

500 nm) and coma (fc3 = 200 nm). The aberrated probes are

shown in Fig. 7. Figs. 6(c) and 6(d) show the average symmetry

magnitudes for 40 Å-thick and 80 Å-thick models calculated
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Figure 5
Simulated END patterns from the same volume of a model Zr36Cu64 glass
(aperture semi-angle � = 2.7 mrad, spherical aberration Cs = 0 mm,
defocus �f ¼ 0 nm, probe FWHM dp = 0.51 nm) employing the
following approximations: (a) kinematical, (b) phase object, (c) multislice
(1 Å slices) and (d) phase object with large twofold astigmatism
(fa2 ¼ 500 nm).

Figure 6
Average symmetry magnitudes in the presence of (a) noise, (b) lens
aberrations, and employing different diffraction approximations for a (c)
40 Å- and (d) 80 Å-thick model.



in the kinematical, phase grating and multislice (1 Å-thick

slices) approximations. The 80 Å models were constructed by

rotating and stacking the 40 Å-thick models.

From examining Fig. 6(a), it is clear that noise at experi-

mental levels does not appreciably change the average

symmetry magnitudes. Interestingly, noise at higher levels

(10% and 20%) increases both the odd and even symmetry

magnitudes. Fig. 6(b) shows that using a small convergence

angle of 2.3 mrad and an aberration corrector to correct the

probe-forming lens means that lens aberrations of the

measured magnitude do not significantly alter the symmetry

magnitudes. Also, axially symmetric aberrations such as Cs do

not change the symmetry magnitudes even when they are

present at high levels. Non-axial aberrations such as twofold

astigmatism do increase the degree of odd symmetry magni-

tudes at the expense of even symmetries. However, coma,

which is also non-axial, does not seem to have the same effect,

since it does not result in a non-symmetric probe. Figs. 6(c)

and 6(d) show that including dynamical effects does increase

the magnitudes of odd symmetries and decrease the magni-

tudes of the even symmetries. In the case of the phase grating

approximation, which takes into account changes in electron

phase based on atom position, but still retains the projection

approximation, there are small additional contributions to the

odd symmetries. Modelling dynamical effects more exactly

using a multislice calculation increases the magnitude of odd

symmetries. Comparing Figs. 6(c) and 6(d) we see that

doubling the thickness of the glass results in a twofold increase

in odd symmetry magnitudes for the multislice simulations,

and a more than twofold increase in the phase grating

approximation.

For an amorphous material with symmetric SRO units such

as a close-packed metallic glass, one can then interpret the

following scenario for diffraction. Projection of the structure

onto a plane reduces the symmetry of the diffraction pattern

compared to the symmetry of the original object. Dynamical

diffraction between SRO clusters at different heights reduces

the symmetry in the diffraction pattern further as diffracted

intensities become distributed between multiple sets of

‘reflections’. This re-distribution of diffraction intensity in a

single END pattern is challenging to interpret in the absence

of an exact atomic model. However, we will demonstrate that

statistical information of symmetries in an ensemble of END

patterns can give insight into average symmetries present in

the structure.

Fig. 8(a) shows the average symmetry magnitudes in SEND

from two experimental melt-spun ZrxCu100�x glasses and

below this in (b) and (c) the simulated symmetry magnitudes

from the 40 Å- and 80 Å-thick models. The thickness of the

experimental glasses was estimated using EELS as being

between 5 and 10 nm. From comparison with the degree of

odd symmetries and thus asymmetry in the Friedel diffraction

pairs in the models, we see that the experimental thickness is

most likely to be closer to 8 nm. As shown above in the

analysis based on the phase grating and dynamical diffraction

formalisms, dynamical effects result in Friedel-pair asymmetry
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Figure 7
Aberrated probes used to simulate END patterns contributing to
averaged symmetry magnitudes presented in Fig. 6(b).

Figure 8
Average symmetry magnitudes from experimental glass (a) and the (b)
40 Å- and (c) 80 Å-thick model. On the left are the uncorrected
symmetry magnitudes. On the right are the symmetry magnitudes
corrected to regain the single scattering symmetry magnitudes.



according to the simple rule of one spot having a deficit

intensity while the opposing spot has an equal amount of

surplus intensity. This means that dynamical scattering will

cause even symmetries to ‘leak’ into odd symmetries one

channel down. As a first approximate correction to regaining

the kinematical symmetry in these averaged magnitudes, we

suggest adding the magnitude in the odd symmetries into the

even symmetry one channel up. We correct the symmetry

magnitudes on the left of Fig. 8 according to this procedure

and dislay these corrected magnitudes on the right of Fig. 8.

As seen in these corrected symmetry magnitudes from the

simulations, this procedure does result in corrected dynamical

symmetry magnitudes that compare quantitatively with the

kinematical ones. The same procedure results in symmetry

magnitudes for the experimental glasses that are significantly

different. We suggest that these corrected symmetry magni-

tudes now reflect symmetries of the projected structure

without the need to interpret diffracted intensities in indivi-

dual END. In materials with a limited number of high-

symmetry structural units in the diffracting volume the

corrected symmetries may now be interpreted more directly to

understand changes to the SRO of the materials with

composition or preparation history. While the average kine-

matical symmetries may be perhaps more readily interpreted

as reflecting actual symmetries in the object, these only

recover the magnitude squared of the Fourier transform of the

projected object, and structural information is lost. It is clear

that the subsequent odd symmetries that appear in the END

patterns due to dynamical diffraction contain valuable addi-

tional information about the three-dimensional structure of

the object.

4. Conclusion

Angular symmetries in electron nanodiffraction patterns are

examined in the context of lens aberrations, camera noise and

dynamical diffraction effects. Simulations demonstrated that

dynamical diffraction was chiefly responsible for odd

symmetries in electron nanodiffraction patterns under condi-

tions in modern aberration-corrected microscopes. The

difference in the intensity of nominally Friedel-related

diffraction pairs for disordered structures was found to have a

simple form. This allowed an approximate correction to be

applied to average dynamical diffraction pattern angular

symmetry magnitudes which recovered the kinematical

symmetry magnitudes. These can be interpreted in terms of

the symmetry of the actual projected object. In the case of the

simulated data for model thicknesses of 4–8 nm this correction

was accurate within numerical uncertainty.
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